
Debugging 
strongly-compartmentalized 
distributed systems

Henry Zhu
Nik Sultana
Boon Thau Loo

1

Recording: https://youtu.be/16_bMEAJLwI

https://youtu.be/16_bMEAJLwI


● Limit access of information to entities
● In other words, break up a system into different parts with different levels of 

access.
● Hard to get right

○ Transfer of data between compartments might be corrupted
○ Information leak
○ Compartmentalized software might operate differently from original 

software
■ Might deal with privilege levels

○ What tools do I have available to debug
these cases?

Compartmentalization

2



Existing tools for debugging 
compartmentalized software

● GDB
○ Works at a process level
○ Privileges dictated by OS
○ Doesn’t recognize compartments

● LLDB
○ LLVM/Clang debugger
○ Works similarly to GDB

● Two prototypes to solve problem
○ Custom Debugger
○ GDB Stub Debugger

3



Custom Debugger

● Custom built debugger that recognizes compartments
● Has 12 commands -- of which 11 is a subset of GDB (read/write 

memory, breakpoints, variable printing)
● Parses DWARF - common debug information generated by 

compilers
● Ability to switch between compartments

4



GDB Stub Debugger

● Implements a stub that follows the GDB protocol 
(communication back and forth from the GDB client, or the user)

● Features most of the commonly used GDB commands 
(breakpoints, reading/writing to variables, back-tracing)

● Rather than having the difference be at the process level, the 
GDB Stub debugger operates at the compartment level

5



GDB Debugger

6



Custom debugger

7



Binary Size(kilobytes)

8

Time overhead(CPU cycles)

Source line changes 



Comparison

● Custom debugger is not as simple to use as GDB
○ Some actions require more commands for custom debugger 

than for GDB
○ Preprocessing step required to parse debug information 

before debugging the program
● GDB

○ Cannot switch between compartments
■ Each GDB stub only knows the compartment it is 

attached to
○ Cannot disconnect and reconnect to compartments

■ Background listener threads are needed to support 
reconnections 9


