Optimal Randomized Complete

Visibility on a Grid by Asynchronous Robots with Lights

Gokarna Sharma, Kent State University
Ramachandran Vaidyanathan, Louisiana State University
Jerry L. Trahan, Louisiana State University

APDCM 2020, New Orleans, LA, USA May 18, 2020

The Complete Visibility Problem on a Grid

Input: N robots placed initially arbitrarily on distinct nodes of a grid
Output: Each robot is on a distinct node of the grid and it sees all $N-1$ others

Input of 7 robots: 1 can't see 3, 3 can't see 1,5, and 6(7) can't see 7(6)

Output: each robot sees everyone else

Robot and Grid Model

Point Robots with Lights:

- Anonymous, autonomous, indistinguishable, disoriented
- Obstructed visibility for collinear robots
- Equipped with lights that can display a color at a time from a fixed set; the light colors are persistent

Grid:

- Grid embedded in the Euclidean plane
- Grid nodes have no IDs and edges have no labels
- Nodes do not have memory
- Unbounded size
- Applications and use in real-life robotic systems

Performance model

Asynchronous - all robots perform their cycles (below) at arbitrary times
Epoch - the time interval for every robot executing its cycle at least once
Runtime - the number of epochs
Area - the grid size occupied by the solution

A cycle for a robot:
Look: observe positions and colors of all visible robots
Compute: compute destination node to move and color for the light; destination node is one of the four neighbor nodes Move: change the color and move to the destination node

Contributions

Result	Time	Area	No. of Colors	Remarks
Lower bound	$\Omega(N)$	$\Omega\left(N^{2}\right)$	--	--
Upper bound	$O(\max \{D, N\})$	$O\left(N^{2}\right)$	17	deterministic
Upper bound	$O(\max \{D, N\})$	$O\left(N^{2}\right)$	50	randomized

- D-diameter of the input configuration

- Our upper bounds are optimal on time when $D=O(N)$
- Our upper bounds are always optimal on area
- Deterministic/randomized depends on leader election requirement

Previous Result

Adhikary et al. --	--	11	deterministic	
This paper	$\Omega\left(\max \left\{D N, N^{2}\right\}\right)$	$\Omega\left(N^{2}\right)$	--	deterministic

Improvement on time at least $O(N)$ factor, keeping number of colors $O(1)$

Techniques

Lower bound - pigeon-hole argument of no three robots can be on a horizontal/vertical line of grid for complete visibility

Upper bound - 3 Stages (Stage 1-3)
Stage 1 - elect two leaders if needed
Stage 2 - move robots to position themselves on an axis-aligned (horizontal/vertical) line
Stage 3 - move robots from the line to the grid nodes satisfying complete visibility

Each stage runs for $O(\max \{D, N\})$ epochs

Stage 1

Input of 10 robots

After Stage 1

2-step process:
Step 1: Arrange robots on a four-corner axis-aligned rectangle configuration (the right figure); $N-4$ robots are in its interior Step 2: Elect two leaders among four robots on the rectangle; red and yellow; yellow and green; green and purple; or purple and red

Stage 2

After Stage 1

After Stage 2
-Suppose red and yellow were elected first and second leader in Stage 1 -Move all robots to the red-yellow line on consecutive positions (the right figure)
-If N is not prime, move one robot to the first prime $N^{\prime}>N$ distance from red (black robot on the right figure)

Stage 3

After Stage 2

After Stage 3 (a complete visibility configuration)
-Move black robot one hop up and color different
-Red robot stays wherever it was after Stage 2
-For each other robot, if it is at distance i from Red then move vertically up distance $i^{2} \bmod N^{\prime}$ and assume some different color
-From Roth's theorem [19], complete visibility is guaranteed

Thank You!

Questions: SHARMA@cs.kent.edu

$$
\begin{aligned}
& \text { VAIDY@Isu.edu } \\
& \text { JTRAHAN@Isu.edu }
\end{aligned}
$$

Resources:

h†tp://www.ece.Isu.edu/vaidy/IPDPS-20-Resources/

