# Optimal Randomized Complete Visibility on a Grid by Asynchronous Robots with Lights

<u>Gokarna Sharma</u>, Kent State University Ramachandran Vaidyanathan, Louisiana State University Jerry L. Trahan, Louisiana State University

### APDCM 2020, New Orleans, LA, USA May 18, 2020

## The Complete Visibility Problem on a Grid

**Input:** N robots placed initially arbitrarily on distinct nodes of a grid

**Output:** Each robot is on a distinct node of the grid and it sees all N - 1 others



Input of 7 robots: 1 can't see 3, 3 can't see 1,5, and 6(7) can't see 7(6)



Output: each robot sees everyone else

### Robot and Grid Model

Point Robots with Lights:

- Anonymous, autonomous, indistinguishable, disoriented
- Obstructed visibility for collinear robots
- Equipped with lights that can display a color at a time from a fixed set; the light colors are persistent

#### Grid:

- Grid embedded in the Euclidean plane
- Grid nodes have no IDs and edges have no labels
- Nodes do not have memory
- Unbounded size
- Applications and use in real-life robotic systems

### Performance model

- Asynchronous all robots perform their cycles (below) at arbitrary times
- Epoch the time interval for every robot executing its cycle at least once
- Runtime the number of epochs
- Area the grid size occupied by the solution

#### A cycle for a robot:

Look: observe positions and colors of all visible robots Compute: compute destination node to move and color for the light; destination node is one of the four neighbor nodes Move: change the color and move to the destination node

### Contributions

| Result                                                                                                                                                                                                                                               | Time                         | Area            | No. of Colors | Remarks                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|---------------|--------------------------------|
| Lower bound                                                                                                                                                                                                                                          | $\Omega(N)$                  | $\Omega(N^2)$   |               |                                |
| Upper bound                                                                                                                                                                                                                                          | $O(\max\{D, N\})$            | $O(N^2)$        | 17            | deterministic                  |
| Upper bound                                                                                                                                                                                                                                          | $O(\max\{D, N\})$            | $O(N^2)$        | 50            | randomized                     |
| <ul> <li>D- diameter of the input configuration</li> <li>Our upper bounds are optimal on time when D = O(N)</li> <li>Our upper bounds are always optimal on area</li> <li>Deterministic/randomized depends on leader election requirement</li> </ul> |                              |                 |               |                                |
| Previous Result                                                                                                                                                                                                                                      |                              |                 |               |                                |
| Adhikary et al.<br>This paper                                                                                                                                                                                                                        | <br>$\Omega(\max\{DN, N^2\}$ | ) $\Omega(N^2)$ | 11<br>        | deterministic<br>deterministic |

Improvement on time at least O(N) factor, keeping number of colors O(1)

## Techniques

Lower bound - pigeon-hole argument of no three robots can be on a horizontal/vertical line of grid for complete visibility

Upper bound - 3 Stages (Stage 1 - 3) Stage 1 - elect two leaders if needed Stage 2 - move robots to position themselves on an axis-aligned (horizontal/vertical) line Stage 3 - move robots from the line to the grid nodes satisfying complete visibility

Each stage runs for  $O(\max\{D, N\})$  epochs

Stage 1



Input of 10 robots



2-step process:

Step 1: Arrange robots on a four-corner axis-aligned rectangle configuration (the right figure); N - 4 robots are in its interior Step 2: Elect two leaders among four robots on the rectangle; red and yellow; yellow and green; green and purple; or purple and red

Stage 2



-Suppose red and yellow were elected first and second leader in Stage 1 -Move all robots to the red-yellow line on consecutive positions (the right figure)

-If N is not prime, move one robot to the first prime N' > N distance from red (black robot on the right figure)

Stage 3



After Stage 2



After Stage 3 (a complete visibility configuration)

-Move black robot one hop up and color different
-Red robot stays wherever it was after Stage 2
-For each other robot, if it is at distance *i* from Red then move vertically up distance *i*<sup>2</sup> mod N' and assume some different color
-From Roth's theorem [19], complete visibility is guaranteed

## Thank You! Questions: <u>SHARMA@cs.kent.edu</u> <u>VAIDY@lsu.edu</u> <u>JTRAHAN@lsu.edu</u>

#### **Resources:**

http://www.ece.lsu.edu/vaidy/IPDPS-20-Resources/