
A Model Checking Method for
Secure Routing Protocols by SPIN

with State Space Reduction
Hideharu Kojima, Naoto Yanai

Graduate School of Information Science and Technology,
Osaka University

Contact:
Hideharu Kojima: hkojima@ist.osaka-u.ac.jp

Introduction

It is easy that an attacker in a propagation area of nodes receives and
then analyzes packets and send malicious packets. Once malicious attack
is succeeded, e.g., in a case of black hole attacks, an attacker can obtain
sensing data from sensor nodes instead of reaching the data to sink nodes
while commands from the sink nodes are not reached to sensor nodes.
Consequently, critical problems will occur in social activities of IoT
systems.

To tackle such an issue, secure routing protocols have been investigated. These protocols have introduced
digital signatures to guarantee the route information in a packet for route establishment. By applying a
secure routing protocol as a routing protocol for WSN, IoT systems is able to sidestep injuries from the
attacks.

Since WSNs are often essential for developing IoT systems, improving the
security for WSNs is an important issue for IoT systems. More specifically,
IoT systems are applications running on WSNs to collect information by
using sensors efficiently.

To apply a secure routing protocol into IoT systems, developers should verify whether the secure routing
protocol satisfies the given properties. In this paper, we focus on two kinds of targeting tools for
verification of a secure routing protocol, i.e., a formal verification method with the model checking tool
named SPIN

An IoT System on WSN

insert fake info.
steal data.

Problem

When model checking is conducted for a target protocol, we need to make a model representing behavior
of the target protocol. Then, we can obtain result whether the target protocol satisfies the given properties
or not. When the number of nodes is small, e.g., four and five nodes, the model checking can finish quickly.
However, executions of the model checking with more than nine nodes is not finished even after the
execution time is taken for a day. The reason is because, when the number of nodes becomes large, the
number of topologies increases exponentially. We show an example in above figures. The figures shows
six topologies consisting of five nodes. There are six orders of the three forwarding nodes,
i.e., v1, v2 and v3. These orders of the nodes are permutation consisting of three nodes among the entire
nodes. Likewise, other topologies also exist in addition to the topologies in above figures. As the number
of topologies is getting huge, the number of states searched by a model checking tool becomes huge
exponentially. Consequently, a topology increase is one of concerns for the state space explosion.

S v1

v2

v3

D

Topo1: Topo3:S v1

v2

v3

D

Topo2: S v2

v1

v3

D

S v2

v3

v1

D

Topo4: Topo5: S v2

v1

v3

D

S v2

v3

v1

D

Topo6:

Proposed Method
S v1 v2 D

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,S,D,0,1,1,ri(S),sig(S))
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,S,D,0,3,1,ri(S,1,2),sig(S,1,2))
pkts:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,1,2,D))
c[D]:(0,S,D,0,3,1,ri(S,1,2),sig(S,1,2))

v1 v2

id: v1, PC:3
pktr:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D))
pkts:(1,D,S,S,3,1,ri(S,1,2,D),sig(S,1,2,D))
c[v1]:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D))

id: v2, PC:0
pktr:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,1,2,D))
pkts:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D))
c[v2]:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,1,2,D))

S v2 v1 D

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,S,D,0,1,1,ri(S),sig(S))
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,S,D,0,3,1,ri(S,2,1),sig(S,2,1))
pkts:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))
c[D]:(0,S,D,0,3,1,ri(S,2,1),sig(S,2,1))

v1 v2

id: v1, PC:0
pktr:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))
pkts:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))
c[v1]:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))

id: v2, PC:3
pktr:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))
pkts:(1,D,S,S,3,1,ri(S,2,1,D),sig(S,2,1,D))
c[v2]:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))

(1)

(2)

The figure (1) and the figure (2) are the same
topology. Tables under figures represent state
variables of corresponding figures. Both state
variables in tables are similar. If state variables
of the figure (2) related to the node v1 and the
node v2 are replaced, both figures become
same state.
The proposed method regard two state which
are the same topology as the same sate by
replacing forwarding nodes.

The proposed method is based on our previous
method [27]. Our previous method suppress
the number of states by replacing state
variables related to forwarding nodes (target
state variables are red colored in the lower
table).

However, node information included in
signatures (green colored in the lower table)
cannot be replaced without recalculation them.
The proposed method in this research can
replace node information by calculating
signatures.

replace

[27]: H. Kojima and N. Yanai, “A state space reduction method for model checking of wireless multi-hop network routing protocols focusing on topologies,” in Seventh
International Symposium on Computing and Networking Workshops, CANDAR 2019 Workshops, IEEE, 2019, pp. 14–20.

replace

Proposed Method: Node replacement
Replacement Step 1: PC, c, pktr, pkts, ri and sig of v1 in (2) are moved to v2 in !". State
variables in !" related to v2 is changed.
Replacement Step 2: PC, c, pktr, pkts, ri and sig of v2 in (2) are moved to v1 in !". State
variables in !" related to v1 is also changed.
Replacement Step 3: S and D in (2) are moved to S and D in !". State variables in !"
related to S and D are changed.
Replacement Step 4: we replace values ”v1” and ”v2” stored in state variables to ”v2”
and ”v1”, respectively. For example, pktr=(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D)) of v1 in
Replacement Step 3 becomes pktr=(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,2,1,D)).
Replacement Step 5: signatures in all pkts, pktr and c of all nodes are recalculated. For
example, pktr=(1, D, S, v1, 2, 1, ri(S,1,2,D), sig(S,2,1,D)) of v1 in Replacement Step 4
becomes pktr=(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D)).

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,0,0,0,0,0,ri(),sig())
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,0,0,0,0,0,ri(),sig())
c[D]:(0,0,0,0,0,0,ri(),sig())

v1 v2

id: v1, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,0,0,0,0,0,ri(),sig())
c[v1]:(0,0,0,0,0,0,ri(),sig())

id: v2, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,0,0,0,0,0,ri(),sig())
c[v2]:(0,0,0,0,0,0,ri(),sig())

an empty state !"

(2) in above phrases is a state representing the figure (2)
in the previous slide.
An empty state !" is prepared for node replacement.
We illustrate node replacement steps in next slide.

Illustration for Node Replacement

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,S,D,0,1,1,ri(S),sig(S))
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,S,D,0,3,1,ri(S,2,1),sig(S,2,1))
pkts:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))
c[D]:(0,S,D,0,3,1,ri(S,2,1),sig(S,2,1))

v1 v2

id: v1, PC:0
pktr:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))
pkts:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))
c[v1]:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))

id: v2, PC:3
pktr:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))
pkts:(1,D,S,S,3,1,ri(S,2,1,D),sig(S,2,1,D))
c[v2]:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,S,D,0,1,1,ri(S),sig(S))
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,S,D,0,3,1,ri(S,2,1),sig(S,2,1))
pkts:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))
c[D]:(0,S,D,0,3,1,ri(S,2,1),sig(S,2,1))

v1 v2

id: v1, PC:3
pktr:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))
pkts:(1,D,S,S,3,1,ri(S,2,1,D),sig(S,2,1,D))
c[v2]:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))

id: v2, PC:0
pktr:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))
pkts:(1,D,S,v2,2,1,ri(S,2,1,D),sig(S,2,1,D))
c[v1]:(1,D,S,v1,1,1,ri(S,2,1,D),sig(S,2,1,D))

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,S,D,0,1,1,ri(S),sig(S))
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,S,D,0,3,1,ri(S,1,2),sig(S,2,1))
pkts:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,2,1,D))
c[D]:(0,S,D,0,3,1,ri(S,1,2),sig(S,2,1))

v1 v2

id: v1, PC:3
pktr:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,2,1,D))
pkts:(1,D,S,S,3,1,ri(S,1,2,D),sig(S,2,1,D))
c[v2]:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,2,1,D))

id: v2, PC:0
pktr:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,2,1,D))
pkts:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,2,1,D))
c[v1]:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,2,1,D))

S D

id: S, PC:0
pktr:(0,0,0,0,0,0,ri(),sig())
pkts:(0,S,D,0,1,1,ri(S),sig(S))
c[S]:(0,0,0,0,0,0,ri(),sig())

id: D, PC:0
pktr:(0,S,D,0,3,1,ri(S,1,2),sig(S,1,2))
pkts:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,1,2,D))
c[D]:(0,S,D,0,3,1,ri(S,1,2),sig(S,1,2))

v1 v2

id: v1, PC:3
pktr:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D))
pkts:(1,D,S,S,3,1,ri(S,1,2,D),sig(S,1,2,D))
c[v2]:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D))

id: v2, PC:0
pktr:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,1,2,D))
pkts:(1,D,S,v1,2,1,ri(S,1,2,D),sig(S,1,2,D))
c[v1]:(1,D,S,v2,1,1,ri(S,1,2,D),sig(S,1,2,D))

S v2 v1 D
state of (2)

Yellow arrows represent processes from Step 1 to Step
3, the proposed method moves state variables from the
state (2) to an empty state !"

Step 1 Step 2Step 3 Step 3

Red arrows indicates replacement of state variables “v1”
to “v2”, ”v2” to “v1”, and “1” to “2”, “2” to “1” in route
information ri in Step 4.

Step 4

Step 5Step 5

Green arrows indicate signature recalculation in Step 5.

Implementation
We implement the proposed method as C source codes in pan.c generated by SPIN1 and
apply an aggregate signature algorithm proposed in [13] as a signature algorithm in
ISDSR. To embed processes of the proposed method, we create a script file, named
isdsr.py in Python. The processes of isdsr.py are followed after the number of nodes N is
given. The details are presented as follows:

1 https://github.com/delab-ou/isdsr spin
[13]: K. Muranaka, N. Yanai, S. Okamura, and T. Fujiwara, “ISDSR: Secure DSR with ID-based Sequential Aggregate Signature,” in Proc. the 13th
International Joint Conference on e-Business and Telecommunications - Volume 4: SECRYPT, (ICETE 2016), 2016, pp. 376–387.

1) Process 1: isdsr.py generates a promela source code, named isdsr_gen.pml, which is a model for ISDSR. The
generated isdsr_gen.pml consists of models containing one source node, one destination node, and N-2 forwarding
nodes. In our implementation, a source node has a value 1 as its own id, and a destination node has a value 2 as its
own id. Forwarding nodes are assigned more than 3 as their own id.
2) Process 2: The process makes the run of SPIN with isdsr_gen.pml in order to generate source codes in the
C language, e.g., pan.c and pan.h.
3) Process 3: The process generates two header files (replace.h and print_state.h), and two source
files replace.c and print_state.c in C language. The replace.c includes functions to replace nodes. The
print_state.c includes functions to print state variables for debugging.
4) Process 4: The process generates a C language source code, named pan_symm.c from pan.c. Statements to call
functions to replace nodes in replace.c are inserted into pan_symm.c.

After finishing the above processes, six files, i.e., aodv_gen.pml, pan_symm.c, replace.h, replace.h,
print_state.h and print_state.c, are generated. To execute model checking for ISDSR, we also
implement ibsas.c, ibsas_for_isdsr.c and isdsr_spin.c for the aggregate signature algorithm in ISDSR.

Experimental Results
No.
Nodes

states time [s] mem [MB]

proposed original rate proposed original rate proposed original rate

4 334 542 61.62 0.31 0.22 140.90 131 133 97.76

5 1195 4009 29.78 2.12 0.73 290.41 138 159 86.79

6 6388 29072 21.97 10.3 3.95 260.74 185 387 47.80

7 35284 213419 16.53 108 29.4 367.34 496 2348 21.12

8 191072 1665776 11.47 1.51x10# 225 671.11 2415 19698 12.26

9 1004558 - - 2.36x10$ - - 13736 - -

The experimental results are shown in the table above. We apply a parameter MEMLIM = 60000 as a
compile-time option of model checker. This means that memory usage is up to 60 GB because the
experimental environment equips 64 GB memory. ”O. M.” in the table represents the out of memory.
This result means that the execution cannot be completed by exhausting the 60 GB memory. The results of

the proposed method are superior to those of the original model checking in SPIN. Especially, when the
number of nodes is eight, the proposed method reduces the number of states by 11.47% in comparison with
the original checking in SPIN. The proposed method is also able to treat states which are the same shape of
the topology by replacing nodes. In the experiment with nine nodes, while experiments with the original
checking in SPIN do not finish in the setting, those with the proposed method can be finished.

Discussion

No.
Nodes

calls Execution time [s]

proposed original rate proposed original rate

4 101 10 10.1 1.42x10#$ 1.44x10#% 9.90

5 1326 32 41.44 1.91 4.66x10#% 40.97

6 6775 130 52.12 9.69 1.87x10#$ 51.76

7 72747 652 111.58 1.05x10% 1.87x10#$ 111.26

8 1005265 3914 256.84 1.43x10& 5.69 250.97

In the experimental results, the proposed method takes more calculation time than the original model
checking in SPIN. We consider two reasons related to this point. The first reason is that the algorithm to find
an equivalent state is not mature. With regard to the execution time, the proposed method needs to take a way
to find an equivalent state efficiently.

The other reason is that the generation of
signatures needs a calculation resource. More
specifically, the signature algorithm in ISDSR
applies an elliptic curve and its related functions
for generation and verification of signatures. To
recognize influence of the signature generation,
we measure the number of calls for signature
generation and accumulation of the time for
signature generation in one execution.

The columns ”proposed” and ”original” represent the number of calls for signature generation in one execution. The column
of “ratio” represents values from the expression proposed/original. The number of calls in the column “proposed” is much
greater than that of “original”. In the row whose number of nodes is seven, the value of “proposed” is as over one hundred
times as the value of “original”. We focus on the ratio how the execution time for signing function accounting for in the
execution of model checking. For example, when the number of nodes is eight, the execution of the proposed method takes
1.51x10& seconds in the table of the experimental results. This execution time includes 1.43x 10% seconds for signing
function. The ratio of the execution time for signing function accounts for about 94% for the execution of model checking.
On the other hand, the ratio of the execution time for signing function in original accounts for about 2%. The execution times
of the proposed and the original except the signing function execution are about 90 seconds and about 220 seconds,
respectively. As long as the execution time except the signing function execution, we consider the proposed method takes less
time for model checking.

Conclusion
In this paper, we proposed a method to reduce the state space for verification of ISDSR.
The proposed method has been based on symmetry reduction and the main idea is to focus
on shapes of topologies. We improved the proposed method to treat signatures in state
variables for secure routing protocols. If shapes of both topologies represented by different
states are identical, the proposed method can check if the different states are equivalent by
replacing nodes and calculating signatures. We also implemented the proposed method and
conducted experiments to measure the number of states, memory usage and execution time
in comparison with the original checking in SPIN. As a result, the proposed method
outperformed the original checking in SPIN. Furthermore, the proposed method completed
an execution for nine nodes while the original checking in SPIN was unable to finish the
execution of the same conditions due to the memory limit.

The current limitation in this work is that the proposed method is specialized for ISDSR.
Hence, in future work, we plan to apply the proposed method to verification of other secure
routing protocols.
We also try to introduce the idea of the proposed method into SPIN itself.
Another future plan is to implement an efficient method for finding an equivalent state to
overcome the bottleneck described in Discussion.

