
ORNL is managed by UT-Battelle, LLC
for the US Department of Energy

Oak Ridge National Laboratory
An Initial Assessment of NVSHMEM for High
Performance Computing

Chung-Hsing Hsu, Neena Imam
{hsuc,imamn}@ornl.gov

Akhil Langer, Sreeram Potluri,
Chris J. Newburn
{alanger,spotluri,cnewburn}@nvidia.com

APDCM’20
May 18, 2020

222
Computational Research
& Development Programs

One-Page Summary

• NVSHMEM is an experimental programming library:
– Developed by NVIDIA.
– Alternative to the popular CUDA+MPI approach.
– Enabling GPU-initiated data communication.
– Supporting SHMEM for NVIDIA GPU clusters.

• We focus on evaluating NVSHMEM at scale:
– NVIDIA incapable of doing it in house.
– Testing NVSHMEM on ORNL’s Summit supercomputer.
– Eyeing on usability, functionality, and scalability.
– Using math kernels at various optimization levels.
– Helping make NVSHMEM a viable option for HPC.

333
Computational Research
& Development Programs

Evaluating Methodology

• Application workload:
− matrix-matrix multiplication: direct SHMEM port.
− Jacobi solver: highly optimized.

• Target platform:
− A Supercomputer with 4,602 compute nodes.
− 6 NVIDIA V100 GPUs and 2 IBM Power9 CPUs per node.

• Evaluation criteria:
– Usability: Complexity of writing a NVSHMEM code.
– Functionality: Robustness of NVSHMEM itself.
– Scalability: Performance improvement with more GPUs.

444
Computational Research
& Development Programs

Case Study: Matrix Multiplication

• Code unoptimized and porting straightforward.
• Bug inherited from SHMEM code identified.

• Optimization non-trivial.
– CUDA programming is non-trivial:

• <<<1,1>>> is easy, but not <<<M,N>>>. Also corner cases.

– NVSHMEM adds complexity:
• Per-GPU data size different, but same symmetric memory size.
• A rich set of extended API, but lacking examples.

• Limited strong scaling.
– Improved for larger problem sizes.

• Performance portability not guaranteed.

555
Computational Research
& Development Programs

Limited Strong Scaling

Code: matrix multiplication. Overall problem size: 1024 ✕ 1024

0

20

40

60

80

100

0

50

100

150

200

250

1 2 4 8 16 32 64 128

Pa
ral

lel
 Ef

fic
ien

cy
 (%

)

To
tal

 Ex
ecu

tio
n T

im
e (

sec
on

ds
)

Node Count

runtime efficiency

666
Computational Research
& Development Programs

Case Study: Jacobi Solver

• Code highly optimized and a bit complex.
• The tested library is buggy.

– Code crashes with no warnings at 24K GPUs.
– Code hangs running a less-optimized version.

• Not all issues are from the library.
– Error in configuring CUDA kernel to run.
– Logic flaw uncaught until we modified the code.

• Limited strong scaling.
– But near-optimal weak scaling.

• Performance better than CUDA+MPI.
– But unexplained anomalies at the largest scale.

777
Computational Research
& Development Programs

Limited Strong Scaling

0

20

40

60

80

100

0

4

8

12

16

20

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Pa
ral

lel
 Ef

fic
ien

cy
 (%

)

To
tal

 Ex
ecu

tio
n T

im
e (

sec
on

ds
)

Node Count

runtime efficiency

Code: Jacobi solver. Overall problem size: 32768 ✕ 32768

888
Computational Research
& Development Programs

Near-Optimal Weak Scaling

Code; Jacobi solver. Per-node problem size: 32768 ✕ 8192

0

4

8

12

16

20

24

28

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

To
tal

 Ex
ecu

tio
n T

im
e (

sec
on

ds
)

Node Count

runtime

999
Computational Research
& Development Programs

Conclusions

• Writing a correct NVSHMEM code can be non-trivial.
– Requires good knowledge of CUDA and SHMEM.
– Code may hang; Bugs may manifest only at largest scale.

• Writing an efficient NVSHMEM code can be non-trivial.
– Direct porting does not guarantee performance portability.
– Direct use of API does not guarantee best performance.
– Requires expertise in CUDA and NVSHMEM extended API.

• NVSHMEM has potentials and will improve over time.
– We have helped improving its functionality & performance.

101010
Computational Research
& Development Programs

Acknowledgements

This work was supported by the United States Department of Defense (DoD)
and used resources of the Oak Ridge Leadership Computing Facility at Oak
Ridge National Laboratory.

