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One-Page Summary

• NVSHMEM is an experimental programming library:
– Developed by NVIDIA.
– Alternative to the popular CUDA+MPI approach.
– Enabling GPU-initiated data communication.
– Supporting SHMEM for NVIDIA GPU clusters.

• We focus on evaluating NVSHMEM at scale:
– NVIDIA incapable of doing it in house.
– Testing NVSHMEM on ORNL’s Summit supercomputer.
– Eyeing on usability, functionality, and scalability.
– Using math kernels at various optimization levels.
– Helping make NVSHMEM a viable option for HPC.
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Evaluating Methodology

• Application workload:  
− matrix-matrix multiplication: direct SHMEM port.
− Jacobi solver: highly optimized.

• Target platform: 
− A Supercomputer with 4,602 compute nodes.
− 6 NVIDIA V100 GPUs and 2 IBM Power9 CPUs per node.

• Evaluation criteria:
– Usability: Complexity of writing a NVSHMEM code.
– Functionality: Robustness of NVSHMEM itself.
– Scalability: Performance improvement with more GPUs.
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Case Study: Matrix Multiplication 

• Code unoptimized and porting straightforward.
• Bug inherited from SHMEM code identified.

• Optimization non-trivial.
– CUDA programming is non-trivial:

• <<<1,1>>> is easy, but not <<<M,N>>>. Also corner cases.

– NVSHMEM adds  complexity:
• Per-GPU data size different, but same symmetric memory size.
• A rich set of extended API, but lacking examples.

• Limited strong scaling.
– Improved for larger problem sizes.

• Performance portability not guaranteed.
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Limited Strong Scaling

Code: matrix multiplication. Overall problem size: 1024 ✕ 1024
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Case Study: Jacobi Solver

• Code highly optimized and a bit complex.
• The tested library is buggy.

– Code crashes with no warnings at 24K GPUs.
– Code hangs running a less-optimized version.

• Not all issues are from the library.
– Error in configuring CUDA kernel to run.
– Logic flaw uncaught until we modified the code.

• Limited strong scaling.
– But near-optimal weak scaling.

• Performance better than CUDA+MPI.
– But unexplained anomalies at the largest scale.
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Limited Strong Scaling

0

20

40

60

80

100

0

4

8

12

16

20

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Pa
ral

lel
 Ef

fic
ien

cy
 (%

)

To
tal

 Ex
ecu

tio
n T

im
e (

sec
on

ds
)

Node Count

runtime efficiency

Code: Jacobi solver. Overall problem size: 32768 ✕ 32768
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Near-Optimal Weak Scaling

Code; Jacobi solver. Per-node problem size: 32768 ✕ 8192
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Conclusions

• Writing a correct NVSHMEM code can be non-trivial.
– Requires good knowledge of CUDA and SHMEM.
– Code may hang; Bugs may manifest only at largest scale.

• Writing an efficient NVSHMEM code can be non-trivial.
– Direct porting does not guarantee performance portability.
– Direct use of API does not guarantee best performance.
– Requires expertise in CUDA and NVSHMEM extended API.  

• NVSHMEM has potentials and will improve over time.
– We have helped improving its functionality & performance.
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