
1

Martti Forsell VTT, Finland Martti .Forsell @VTT . Fi
Jussi Roivainen VTT, Finland
Jesper Larsson Träff TU Wien, Austria

APDCM’20 May 18, 2020, New Orleans, Louisiana, USA

Optimizing Memory Access in TCF Processors
with Compute-Update Operations

3

1 2

2

1 1

1

1 1

1

1 1

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

Contribution
New compute-update (CU) operations for
TCF processors to optimize iterative
exclusive inter-fiber memory patterns

• Accelerate matrix addition and log-prefix

style patterns where multiple target
locations interchange data without
explicit reloads between the instructions

• Require modifications to on-chip active

memory (AM) units and new CU instruc-
tions that can send their replies to another
fiber than that initiating the access

Implementation in our TPA processor with minimal HW overhead so
that the expected speed ups are achieved with practical functionalities

THICK CONTROL FLOWS (TCF)
[Leppänen11, Forsell13]

3

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

Combine self-similar computations flowing
through the same control path into entities
with a single control but multiple data paths

• Elements are called fibers to distinguish

them from threads having individual control
• The number of computations is called thickness
• There is a mechanism for dynamically changing

the thickness
• Fibers of a TCFs are executed synchronously
• Multiple TCFs can be executed in parallel

Change of
thickness

Current step
of execution

TCF 0001 TCF 0003

Thickness

Fibers

Time

TCFs can also be seen as “universalized vectors”
or “threads with data parallelism”.

Current compute-update operations
Update the target memory location as a function of its old
value and data supplied by the processor. Implement some
key primitives of parallel computing:

• Atomic instructions. Read and conditionally change the contents

of a memory location [Herlihy12].
• Reductive multioperation instructions. Multiple fibers concur-

rently reduce their data into a single value in memory [Forsell18].
• Active memory instructions. Memory operations employing

active memory units attached to the on-chip memory modules
[Forsell05, Forsell06]. Different than active memory operations
(AMOs) [Fang07] and processing-in-memory (PIM) techniques
[Mutlu19, Ahn15].

Can be used to speed up reductions and syncs. Do not work
with memory access patterns in which multiple target loca-
tions interchange data.

4

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

TCF processors
5

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

Current CPUs can execute TCF programs but it is highly
inefficient (slowdown 60 million) X due to slow context
switching, high sync costs and OS time slicing [Forsell20].

TPA is our realization of the TCF concept [Forsell16] with a
number of variants [Forsell18b, Forsell18c...]:

• F frontend (FE) PUs for processing common parts

- VLIW architecture with multiple parallel FUs
- TCF buffers (TB) for holding TCFs

• B backend (BE) PUs for processing individual fibers
- ESM VLIW architecture with multiple chained FUs
- Replicated register block (RR) for fiber data

• F instruction and local memory modules
- uses SMP/NUMA organization

• B shared memory modules
- uses ESM organization

High-level view of TPA

New compute-update operations for opti-
mizing memory access in TCF processors

6

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

3

1 2

2

1 1

1

1 1

1

1 1

 Exclusive access MOs with inter-fiber CU ops, no reply
 Inter-fiber compute-update operation
 Compute-update operation: Either of the input is also the output
 Standard two-operand compute-update operation

3 accesses
1 proc. ALU op

2 accesses
1 proc. ALU op

1 access
1 AM op

1 access
1 AM op

What is needed to implement these in TPA?

At the memory module level:
- Updated active memory units
- Support for new compute-update instructions

At the processor BE side:

- Support for new compute-update instructions
- Mechanism to annul the operations referring outside of the

source array data structure defined by a base address and
current thickness of the TCF

- Mechanism to determine the fiber and corresponding BE,
into which the reply will be returned

7

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

Evaluation
8

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

Benchmark Description
lprefix-base Calculates the prefix sums of an array of 4096..65536 integers using a log-prefix algorithm
lprefix-im Calculates the prefix sums of an array of 4094..65536 integers using an optimized log-prefix algorithm
lprefix-cu Calculates the prefix sums of an array of 4096..65536 integers using the compute-update log-prefix algorithm
madd-base Calculates the sum of two arrays of 4096..65536 integers
madd-cu Calculates the sum of two arrays of 4096..65536 integers
threshold-base Applies a threshold filter to an array of 4096..65536 integers
threshold-cu Applies a threshold filter to an array of 4096..65536 integers
butterfly-base Calculates the entirely real-valued fft butterfly without multiplication with sine/cosine coeffs and Q-branch negation
butterfly-cu Calculates the entirely real-valued fft butterfly without multiplication with sine/cosine coeffs and Q-branch negation

Processor TPA baseline (base) TPA interleaved mapping (im) TPA compute-update (cu)
Processing units 1 frontend/16 backend 1 frontend/16 backend 1 frontend/16 backend
Scheme TCF-processor TCF-processor TCF-processor
TCFs per frontend 128 128 128
Number of FUs 5 frontend/10 backend 5 frontend/10 backend 5 frontend/10 backend
Interconnect 4x4 mesh 4x4 mesh 4x4 mesh
Mapping of fibers to BEs Stacked Stacked/Interleaved Stacked/Interleaved
Active memory units No No Yes
Inter-fiber CU memory opr No No Yes

TPA baseline can execute base programs
TPA interleaved mapping can execute base and im programs
TPA compute-update can execute base, im and cu programs

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

!

"!!!!

#!!!!

$!!!!

%!!!!

&!!!!

'!!!!

(!!!!

)!!!!

*!!!!

"!!!!!

#!%) %!*')"*# "'$)% $#(')

<=2>7-54:1?-4@

>A:-

./

butterfly

!

"!!!!

#!!!!

$!!!!

%!!!!

&!!!!!

&"!!!!

&#!!!!

&$!!!!

&%!!!!

"!!!!!

#!'$ %&'" &$(%# (")$% $**($

+,
-.
/0
12
34
015

-4
6.
72
.8
4.
9.
7-
:;

<=2>7-54:1?-4@

>A:-

15

./

!

"!!!

#!!!

$!!!

%!!!

&!!!!

&"!!!

&#!!!

#!'$ %&'" &$(%# (")$% $**($

6
9

;

<=2>7-54:1?-4@

>A:-

./

lprefix madd

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

(!!!

)!!!

*!!!

%!*')"*# "'$)% $#(') '&&$'

+,
-.
/0
12
34
015

-4
6.
72
.8
4.
9.
7-
:;

<=2>7-54:1?-4@

>A:-

./

threshold

Conclusions
10

M. Forsell, VTT ••• Optimizing Memory Access in TCF Processors with Compute-Update Operations

We have proposed an architectural solution to optimize
memory access in TCF processors by supporting inter-
fiber CU operations. It is based on modified AM units and
special instructions that can send their reply value to an-
other fiber than that initiating the access.

• Applies for exclusive matrix-addition and log-prefix -

style memory access patterns.
• In comparison to the baseline TPA the speedup is

- 150% in log-prefix algorithm
- over 190% in fft-style butterfly algorithm
-•50-100% in matrix addition and threshold filtering

• The HW overhead is very low in our silicon area and
power consumption estimations

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

