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What Is This Paper About?

On large-scale HPC platforms:

@ Scheduling parallel jobs is important to improve application
performance and system utilization;

@ Handling job failures is critical as failure/error rates increase
dramatically with size of system.

This paper combines job scheduling and failure handling for parallel jobs
running on large HPC platforms prone to failures. J




Scheduling Models

Job Model:
@ n rigid parallel jobs all released at time 0 (i.e., batched);
@ each job has a processor request p; and an execution time t;;
@ Jobs are to be scheduled on a set of P identical processors.
Error Model:
@ Jobs are subject to silent errors (or silent data corruptions);

@ Silent error detector (of negligible cost) is available to flag errors at
the end of each job's execution;

@ If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion;

Objective:
@ Minimize the makespan (i.e., successful completion time of all jobs);
@ Number of failures for each job is unknown a priori;

@ No assumption on error rate or distribution.



A failure scenario f = (f1, 2, ..., f,) describes the number of failures each
job experiences during a particular execution.

Example: f =(2,1,0,0,0) for an execution of five jobs.
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Main Results

@ A resilient list-based scheduling algorithm, and O(1)-approximations

for any failure scenario:

e 2-approximation using Greedy heuristic without reservation;
e 3-approximation using Large Job First priority with reservation.

The results nicely extend the ones without job failures [TWY'92].

@ A resilient shelf-based scheduling heuristic, but Q(log P)-approx. for
any shelf-based solution in some failure scenario, e.g.:
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The result defies the O(1)-approx. result without failures [TWY'92].

@ Extensive simulation results of all heuristics using both synthetic
jobs and job traces from the Mira supercomputer.



Relations with Similar Models

Offline/online scheduling with job release times [NS'02, Johannes'06]:
@ In this model, jobs have fixed release times = 2-approx. for list.
@ In our model, “new job releases” (corresponding to failed jobs
restarting) depend on scheduling decisions = 2-approx. for list.
Online one-by-one scheduling of parallel jobs [HP'08, YHZ'09]:

@ In this model, independent jobs must be scheduled one-by-one
without future knowledge = O(1)-approx. for shelf.

@ In our model, no immediate scheduling is required, but (failed)
jobs form dependencies = Q(log P)-approx. for shelf.
Offline/online scheduling with general dependencies [FKST'98, Li'99]:
@ In this model, jobs form a known DAG = ©(P)-approx. for list.

@ Our model is a special online case with n linear chains, each
having an unknown number of identical jobs = 2-approx. for list.



Open Questions

Q1. Results for expected makespan when assuming a probability
distribution (e.g., exponential) for job failures.

@ In particular, does shelf-based scheduling admit an O(1)-approx. for
expected makespan under exponential failure distribution?

Q2. Results for more flexible job models, such as moldable jobs, whose
processor allocations need to be decided before execution.

@ Our latest work' proves approximation ratios for several speedup
profiles, but bounding expected makespan remains an open question.

1 “Scheduling moldable jobs on failure-prone platforms”, coming soon...
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