Revisiting dynamic DAG scheduling
under memory constraints
for shared-memory platforms

Gabriel Bathiel Loris Marchalt
Yves Robert!2 Samuel Thibault3

1:Laboratoire LIP, ENS Lyon, CNRS, Inria and Univ. Lyon, France
2. University Tennessee Knoxville, USA
3: Inria Bordeaux and Univ. Bordeaux, France.

May 18, 2020

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Processing DAGs with Limited Memory

Schedule task graphs

X On a parallel platform
with large data:

with limited shared memory:

C) ‘ memory ‘

e First option: design a good static scheduler:
— NP-complete, non-approximable
— Cannot react to unpredicted changes in the platform
or inaccuracies in task timings

e Second option (this work):
— Limit memory consumption of any dynamic scheduler
— Target: runtime systems

Without impacting parallelism too much

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory

JO Ol
2 \ 5@
@i@—s»@/

Memory used:

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory

JOON
SRNENG
(@—5»@/

Memory used: 1+2=3

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory

JOON
SRNENG
@i@—s»@/

Memory used: 1+2=3

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory

ot e

Memory used: 3+4+2=9

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory

@O0
SANENG
@i@—s»@/

Memory used: 3+4+2=9

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Computing the maximum memory peak

Topological cut: (S, T) with:
@ S include the source node, T include the target node
@ No edge from T to S
o Weight of the cut = weight of all edges from Sto T

af e

Any topological cut corresponds to a possible state when all nodes
in S are completed or being processed.

Two equivalent questions:
@ What is the maximum memory of any parallel execution?
@ What is the topological cut with maximum weight?

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Processing DAGs with Limited Memory

Computing the maximum topological cut

Predict the maximal memory of any dynamic scheduling
=
Compute the maximal topological cut

Two algorithms from [Marchal et al, JPDC'19]:
@ Linear program + rounding
@ Direct algorithm based on MaxFlow/MinCut

Downsides:

o Large running time: O(|V/|?|E|) or solving a LP
May include edges corresponding to the (parallel) computing
of more than p tasks

@ Max. Top Cut = maximum memory of any dynamic
scheduling with infinite number of processors

. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

Problem complexity

Maximum memory with p-processors

Definition (p-MaxTopCut)
Given a graph with black/red edges and a number p of processor,
what is the maximal weight of a topological cut including at most p

red edges 7

Computing the p-MaxTopCut is NP-complete
Reduction from k-MSI O

Revisiting dynamic DAG scheduling

G. Bathie, L. Marchal, Y. Robert, S. Thibault

Series-Parallel Graphs

Case of Series-Parallel graphs

Pseudo Polynomial Time algorithm:
M(Edge(m,r),

), k)
M(Edge(m, True),0) =
M(Edge(m, False), 0)
) k)
). k) =

m,Vk > 1,Vr € {True, False}

(Ser/e(Gl, 2),
(Par(Gl, G2 ,

- ax{M(Gl,k) M(Gz, k)}
max {M(Gy,j) + M(Ga, k = j)}

~ A~ A/~~~
w
—_ — — ~— —

Compute M(H, k) for all H, for all k =0...p. With memoization:
runs in time O(|E|p?).

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

ILP and heuristic for general graphs

General Case: ILP formulation for p-MaxTopCut

The following linear program solves the problem exactly:

max Z m jd; (6)

(ij)EE
V(i,j) € E, dij=pi—p; (7)
V(i,j) € E, dij>0 (8)
ps=1, p:=0 (9)
Z isred; jdij < p (10)
(iJ)eE
Vi, p; € {0,1} (11)

Heuristic relaxation: change Equation (11) to Vi, p; € [0, 1].
— Linear program over rational numbers, efficiently solvable.

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

ILP and heuristic for general graphs

Simulation and Results

Measuring the gap between MaxTopCut (p = 00) vs. p-MaxTopCut

GENOME dataset MONTAGE dataset LIGO dataset
61
i 3 159
g 8 2
£ £ £
Y Y Y
T by = 104
3 3 3
& 109 5 4 &
E E E
2 o o 4
RN D E E ’
O o °
0 T T T T T T T T T T T T
1 3 5 10 1 3 5 10 1 3 5 10
number of processors number of processors number of processors
QR-Mumps dataset DAGGEN-1 dataset DAGGEN-2 dataset
14 4
] 12
. 1.6 . L 124
3 3 10 3
4 144 & 84 &
= = s 8
¢ ¢ 6 g 6
3 3 3
HE . s 4l
& & &
17 g 2 e
] e —
T T T T T T T T T T T T
1 3 5 10 1 3 5 10 1 3 5 10
number of processors number of processors number of processors

Code available at https://github.com/GBathie/PMaxcut.

ILP and heuristic for general graphs

Conclusion

Contributions

e MaxTopCut (former approach) significantly overestimates the
maximum memory compared to proposed p-MaxTopCut

o Computing pMaxTopCut is NP-hard &

@ Proposed heuristic (Linear Program) very efficient to compute
p-MaxTopCut in practice (see paper)

Future work
@ Design efficient strategies to reduce peak memory with p
processors

@ Concentrate on special class of dynamic schedulers, that favor
low memory-consuming tasks

G. Bathie, L. Marchal, Y. Robert, S. Thibault Revisiting dynamic DAG scheduling

	Processing DAGs with Limited Memory
	Problem complexity
	Series-Parallel Graphs
	ILP and heuristic for general graphs

