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Processing DAGs with Limited Memory

Processing DAGs with Limited Memory

Schedule task graphs

X On a parallel platform
with large data:

with limited shared memory:

C ) ‘ memory ‘

e First option: design a good static scheduler:
— NP-complete, non-approximable
— Cannot react to unpredicted changes in the platform
or inaccuracies in task timings

e Second option (this work):
— Limit memory consumption of any dynamic scheduler
— Target: runtime systems

Without impacting parallelism too much
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Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory
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Processing DAGs with Limited Memory

Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
@ Inputs are freed (instantaneously)
@ Outputs are allocated

At the end of a task: outputs stay in memory
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Memory used: 3+4+2=9
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Memory model

Task graphs with:
o Vertex weights w;: task (estimated) durations
o Edge weights m;j: data sizes

Simple memory model: at the beginning of a task
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Processing DAGs with Limited Memory

Computing the maximum memory peak

Topological cut: (S, T) with:
@ S include the source node, T include the target node
@ No edge from T to S
o Weight of the cut = weight of all edges from Sto T

af e

Any topological cut corresponds to a possible state when all nodes
in S are completed or being processed.

Two equivalent questions:
@ What is the maximum memory of any parallel execution?
@ What is the topological cut with maximum weight?
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Processing DAGs with Limited Memory

Computing the maximum topological cut

Predict the maximal memory of any dynamic scheduling
=
Compute the maximal topological cut

Two algorithms from [Marchal et al, JPDC'19]:
@ Linear program + rounding
@ Direct algorithm based on MaxFlow/MinCut

Downsides:

o Large running time: O(|V/|?|E|) or solving a LP
May include edges corresponding to the (parallel) computing
of more than p tasks

@ Max. Top Cut = maximum memory of any dynamic
scheduling with infinite number of processors
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Problem complexity

Maximum memory with p-processors

Definition (p-MaxTopCut)
Given a graph with black/red edges and a number p of processor,
what is the maximal weight of a topological cut including at most p

red edges 7

Computing the p-MaxTopCut is NP-complete
Reduction from k-MSI O
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Series-Parallel Graphs

Case of Series-Parallel graphs

Pseudo Polynomial Time algorithm:
M(Edge(m,r),

), k)
M(Edge(m, True),0) =
M(Edge(m, False), 0)
) k)
). k) =

m,Vk > 1,Vr € {True, False}

(Ser/e(Gl, 2),
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Compute M(H, k) for all H, for all k =0...p. With memoization:
runs in time O(|E|p?).
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ILP and heuristic for general graphs

General Case: ILP formulation for p-MaxTopCut

The following linear program solves the problem exactly:

max Z m jd; (6)

(ij)EE
V(i,j) € E, dij=pi—p; (7)
V(i,j) € E, dij>0 (8)
ps=1, p:=0 (9)
Z isred; jdij < p (10)
(iJ)eE
Vi, p; € {0,1} (11)

Heuristic relaxation: change Equation (11) to Vi, p; € [0, 1].
— Linear program over rational numbers, efficiently solvable.
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ILP and heuristic for general graphs

Simulation and Results

Measuring the gap between MaxTopCut (p = 00) vs. p-MaxTopCut

GENOME dataset MONTAGE dataset LIGO dataset
61
i 3 159
g 8 2
£ £ £
Y Y Y
T by = 104
3 3 3
& 109 5 4 &
E E E
2 o o 4
RN D E E ’
O o °
0 T T T T T T T T T T T T
1 3 5 10 1 3 5 10 1 3 5 10
number of processors number of processors number of processors
QR-Mumps dataset DAGGEN-1 dataset DAGGEN-2 dataset
14 4
] 12
. 1.6 . L 124
3 3 10 3
4 144 & 84 &
= = s 8
¢ ¢ 6 g 6
3 3 3
HE . s 4l
& & &
17 g 2 e
] e —
T T T T T T T T T T T T
1 3 5 10 1 3 5 10 1 3 5 10
number of processors number of processors number of processors

Code available at https://github.com/GBathie/PMaxcut.




ILP and heuristic for general graphs

Conclusion

Contributions

e MaxTopCut (former approach) significantly overestimates the
maximum memory compared to proposed p-MaxTopCut

o Computing pMaxTopCut is NP-hard &

@ Proposed heuristic (Linear Program) very efficient to compute
p-MaxTopCut in practice (see paper)

Future work
@ Design efficient strategies to reduce peak memory with p
processors

@ Concentrate on special class of dynamic schedulers, that favor
low memory-consuming tasks
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